Langsung ke konten utama

Gerak Hewan dan Tumbuhan

1. Tropisme

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Tropisme pergerakan dalam pertumbuhan sel (umumnya pada sel tumbuhan) yang menyebabkan pergerakan organ tumbuhan utuh menuju atau menjauhi sumber rangsangan (stimulus). Apabila pergerakan pertumbuhan menuju ke arah sumber rangsangan maka disebut tropisme positif, sedangkan pergerakan pertumbuhan yang menjauhi sumber rangsangan disebut tropisme negatif. Secara etimologis, tropisme berasal dari bahasa Yunani "tropos" yang memiliki makna "berputar". Saat ini telah ditemukan beberapa macam tropisme berdasarkan sumber stimulus atau rangsangannya.

Jenis-jenis tropisme

Fototropisme

Fototropisme adalah gerak sebagian tumbuhan yang arah geraknya dipengaruhi oleh rangsang cahaya Contoh dari fototropisme adalah pertumbuhan koleoptil rumput menuju arah datangnya cahaya. Koleoptilmerupakan daun pertama yang tumbuh dari tanaman monokotil yang berfungsi sebagai pelindung lembaga yang baru tumbuh. Beberapa hipotesis menyebutkan bahwa hal ini dapat disebabkan oleh kecepatan pemanjangan sel-sel pada sisi batang yang lebih gelap adalah lebih cepat dibandingkan dengan sel-sel pada sisi yang lebih terang karena adanya penyebaran auksin yang tidak merata dari ujung tunas. Hipotesislainnya menyatakan bahwa ujung tunas merupakan fotoreseptor yang memicu respons pertumbuhan. Fotoreseptor adalah molekul pigmen yang disebut kriptokrom dan sangat sensitif terhadap cahaya biru. tube

salah satu contoh tigmotropisme pada Brunnichia ovata
Tigmotropisme adalah Kata ini berasal dari bahasa Yunani "thigma" yang berarti "sentuhan". Contoh dari tigmotropisme adalah pertumbuhan tanaman sulur seperti anggur dan tanaman yang pertumbuhannya merambat dan memiliki sulur yang membelit bagian penopangnya. Sulur tanaman akan tumbuh lurus hingga menyentuh sesuatu. Adanya kontak sulur tersebut merangsang sulur untuk tumbuh melilit, karena terjadi perbedaan kecepatan pertumbuhan. Hal ini dikarenakan sel-sel yang terkena sentuhan akan memproduksi auksin sehingga pertumbuhannya menjadi lebih cepat hingga membengkok dan melilit sumber sentuhan. Contoh lainnya adalah sentuhan angin kencang pada tebing bukit membuat pohon-pohon yang tumbuh di sekitarnya memiliki batang yang lebih pendek dan gemuk apabila dibandingakan dengan pohon yang sama pada daerah yang terlindungi dari angin kencang. Respon perkembangan tumbuhan terhadap gangguan mekanis ini biasa disebut tigmomorfogenesis dan umumnya disebabkan peningkatan produksi etilen. Gas etilen ini merupakan hormon yang dibentuk sebagai respon terhadap rangsangan sentuhan yang hebat.

Gravitropisme (Geotropisme)


Germinasi biji Hippuris vulgarismenunjukkan gejala gravitropisme.
Gravitropisme adalah pertumbuhan sel-sel tanaman karena dipengaruhi oleh gravitasi. Bila suatu benih diletakkan dalam keadaan sembarang, maka tunas akan tumbuh membengkok ke atas dan akar akan tumbuh ke bawah. Pertumbuhan akar merupakan gravitropisme positif, sedangkan pertumbuhan tunas adalah gravitropisme negatif. Gravitropisme ini mulai terjadi setelah proses perkecambahan biji. Tumbuhan dapat membedakan arah atas dan bawah dengan pengendapan statolit. Statolit adalah plastidakhusus yang mengandung butiran pati padat dan terletak pada posisi rendah, misalnya pada bagian tudung akar. Adanya penumpukan statolit pada akar dapat memicu distribusi kalsium dan auksin. Namun, tanaman yang tidak memiliki statolit pun masih dapat mengalami gravitropisme yang disebabkan kinerja sel akar yang dapat berfungsi sebagai indera dan menginduksi perenggangan protein sel ke atas dan penekanan protein sel tanaman ke sisi bawah akar.

Termotropisme

Termotropisme adalah pergerakan pertumbuhan tanaman yang dipengaruhi oleh rangsangan berupa panas atau perubahan panas. Salah satu contoh termotropisme adalah pertumbuhan daun tanaman Rhododendron yang dapat menjadi keriting dan menunduk ke bawah apabila suhu lingkungan mencapai -1 °C. Hal ini diduga merupakan salah satu cara menghindari kekeringan daun di musim dingin dan mencegah pembukaan stomata. Pada pagi hari di musim dingin, daun Rhododendron akan merunduk ke arah bawah karena adanya kenaikan suhu yang disebabkan sinar matahari pagi. Hal ini berakibat pada membran seluler yang membeku akan mencair. Peristiwa ini terjadi berulang setiap hari pada musim dingin. Untuk menghindari kerusakan membran seluler karena peristiwa pencairan-beku berulang, daun tanaman ini akan menghadap ke bawah dan berbentuk keriting. Sebagian dari ujung batang tanaman akan tumbuh dan bergerak ke arah sumber panas apabila suhunya rendah, namun bila suhunya tinggi, ujung batang akan menjauhi sumber panas tersebut. Sementara itu, pertumbuhan akar terhadap rangsangan panas belum ditemukan dengan jelas karena setiap tanaman memiliki karakteristik pergerakan pertumbuhan yang berbeda-beda antara yang satu dengan yang lain.

Skototropisme


Skototropisme (bahasa Yunani, skotos, erarti kegelapan, kekelaman) adalah pergerakan pertumbuhan ke arah kegelapan. Hal ini merupakan kebalikan dari fototropisme sehingga disebut sebagai fototropisme negatif. Contohnya adalah beberapa tumbuhan tropis merambat.



2. Nasti


Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Tekanan turgor disebabkan kadar air dalam sel tumbuhan yang berlebih
Nasti adalah gerak dari bagian tumbuhan yang arahnya tidak bergantung pada arah datangnya rangsangan.
Rangsangan akan menyebabkan perubahan tekanan turgor yaitu tekanan air pada dinding sel akibat perubahan kadar air dalam sel tumbuhan sehingga sel menjadi gembung/ tegang. Tekanan turgor akan meningkat seiring dengan peningkatan kadar air.

Ragam

Berdasarkan sumber rangsangannya, gerak nasti dibedakan menjadi:

Fotonasti

Gerak nasti yang disebabkan karena rangsang berupa cahaya. Contohnya gerak mekarnya bunga pukul empat (Mirabilis jalapa), bunga waru (hibiscus tiliaceus).

Hidronasti

Hidronasti atau higronasti merupakan gerakan bagian tumbuhan akibat adanya rangsangan konsentrasi air. Contohnya adalah daun Poa pratensis yang menggulung dan melipat akibat hilangnya tekanan turgor dalam sel kipas. Daun akan terlipat jika disisi atas dan disisi bawah memiliki tekanan turgor yang berbeda.

Termonasti

Termonasti merupakan gerak bagian tumbuhan akibat rangsangan suhu. Termonasti disebut juga fotonasti karena perubahan suhu disebabkan oleh intensitas cahaya yang mengenai tumbuhan. Cahaya mengakibatkan peningkatan suhu sehingga penggunaan air dalam tubuh meningkat. Akibatnya, tekanan turgor menjadi rendah dan tumbuhan akan tampak layu. Misalnya bunga Mirabilis jalapa yang mekar pada saat suhu rendah, yaitu saat pagi dan sore hari.

Niktinasti


Contoh niktinasti: Daun Cassia corymbosa pada siang (kiri) dan malam hari (kanan)
Niktinasti merupakan gerak tidur pada tunbuhan yang disebabkan karena keadaan gelap. Proses niktinasti banyak terjadi pada tumbuhan berdaun majemuk. Niktinasti terjadi karena sel-sel motor di persendian tangkai daun (anak-anak daun majemuk) atau pulvinus memompa ion K+ dari satu bagian ke bagian lainnya sehingga menyebabkan perubahan tekanan turgor. Contoh niktinasti adalah pada daun lamtoro dan Cassia corymbosa yang melipat kebawah pada saat malam hari.

Tigmonasti

Tigmonasti merupakan gerak tumbuhan yang disebabkan adanya sentuhan atau getaran. Tigmonasti disebut juga seismonasti. Saat rangsangan sentuhan datang, terjadi aliran air menjauhi bagian yang disentuh tersebut. Aliran air tersebut menyebabkan kadar air sel-sel motor di daerah sentuhan berkurang dan tekanan turgor mengecil. Contoh tigmonasti terjadi pada putri malu (Mimosa pudica).

Nasti Kompleks

Nasti kompleks terjadi akibat berbagai faktor rangsangan dari luar yang bekerja sama, seperti suhu, cahaya, air, dan zat kimia. Contohnya terjadi pada stomata daun yang terbuka pada siang hari dan tertutup pada malam hari.


3. Taksis

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Taksis adalah gerak yang terjadi akibat rangsangan luar. Seluruh tubuh tumbuhan akan bergerak, dan arah geraknya ditentukan oleh arah rangsangan. Berdasarkan jenis rangsangannya, taksis dibedakan menjadi beberapa macam, yakni:
  • Fototaksis merupakan gerak taksis yang disebabkan rangsangan cahaya. contohnya gerak Euglena menuju cahaya. Fototaksis dibedakan menjadi dua yaitu fototaksis positif dan fototaksis negatif. Fototaksis positif adalah gerak tumbuhan mendekati rangsangan cahaya, sedangkan fototaksis negatif adalah gerak tumbuhan menjauhi rangsangan cahaya.
  • Kemotaksis merupakan gerak taksis yang disebabkan rangsangan zat kimia. Contohnya gerak sel spermatozoid menuju sel telur.
  • Galvanotaksis atau Elekrotaksis merupakan gerak taksis yang disebabkan rangsangan listrik. Contohnya Gerak organisme tingkat rendah bergerak mendekati listrik.
  • Termotaksis merupakan gerak taksis yang disebabkan oleh rangsangan suhu atau temperatur .
  • Geotaksis merupakan gerak taksis yang disebabkan oleh Gravitasi Bumi
  • Tigmotaksis merupakan gerak taksis yang disebabkan oleh kontak fisik atau sentuhan.
  • Reotaksis merupakan gerak taksis yang disebabkan oleh aliran air.
  • Phonotaksis merupakan gerak taksis yang disebabkan oleh suara.Image result for Gerak Taksis


4. Gerak Hewan Di Darat


Hewan di darat bergerak dengan berbagai cara yaitu berjalan, berlari, melompat, dan merayap. Hewan darat memiliki otot dan tulang yang kuat. Otot dan tulang tersebut digunakan untuk mengatasi inersia ( kecerendungan tubh untuk diam ) dan menyimpan energi pegas ( elastisitas ) sehingga dapat melakukan berbagai aktivitas. Kecepatan gerak hewan di darat berbeda beda karena dipengaruhi oleh perbedaan struktur tulang dan otot yang dimiliki hewan.

Misalnya kuda dan gajah mempunyai gerak yang berbeda beda karena dipengaruhi oleh perbedaan struktur tulang dan otot yang dimiliki oleh hewan. Misalnya gajah dan kuda mempunyai gerak yang berbeda. Gajah memiliki tubuh yang besar, akibatnyauntuk bergerak gajah harus melawan inersia yang nilainya juga besar. Oleh sebab itu gajah bergerak dengan lambat.

Sementara itu, kuda memiliki kaki yang ramping sehingga kuda memiliki elastisitas yang tinggi. Bentuk kaki yang ramping mengakibatkan kijang berlari lebih banyak melompat ke udara dan meluncur di udara. Gaya gesek udara lebih kecil daripada gaya gesek permukaan tanah sehingga kuda dapat berlari dengan cepat.



5. Gerak Hewan Di Air


Air memiliki kerapatan lebih besar dibandingkan udara. Oleh karena itu, ikan lebih sulit bergerak di air. Air memiliki gaya angkat lebih besar dibanding di udara. Namun, hewan yang hidup di air memiliki massa jenis lebih kecil dibanding dengan lingkungannya. Oleh karena itu, ikan dapat melayang di dalam air dengan melakukan sedikit energi. Gerak ini juga memiliki kaitan dengan Hukum Pascal

Gerak Hewan di Dalam Air. Sebagian besar hewan yang hidup di air memiliki bentuk seperti torpedo. Bentuk torpedo ini memungkinkan tubuhnya bergerak meliuk dari kiri 
ke kanan seperti ikan hiu dan gerakan ke atas dan ke bawah seperti mamalia laut ( paus dan lumba lumba ).

Untuk memudahkan bergerak di dalam air, hewan air (ikan) memiliki ciri ciri seperti berikut :

  1. Bentuk tubuh yang aerodinamis (streamline ) untuk mengurangi hambatan ketika bergerak di dalam air
  2. Memiliki ekor dan sirip ekor yang lebar untuk mendorong gerakan ikan dalam air
  3. Memiliki sirip tmbahan untuk mencagah gerakan yang tidk diinginkan
  4. Mengeluarkan gelembung renang untuk mengatur gerakan naik turun
  5.  Memiliki susunan otot dan tulang belakang yang fleksibel untuk mendorong ekor ikan di dalam air.


6. Gerak Hewan Di Udara



Gerak hewan di udara hanya dapat dilakukan oleh hampir segala jenis burung. Beberapa jenis hewan misalnya burung, dapat terbang di udara dengan cara yang unik. Tubuh hewan hewan tersebut memiliki gaya angkat yang besar untuk mengimbangi gaya gravitasi. Salah satu upaya untuk memperbesar gaya angkat yaitu menggunakan sayap. Burung tebang dengan cara mengepakkan sayap. Burung mengepakkan sayapnya dari atas ke bawah untuk menimbulkan gerakan mengangkat dan mendorong tubuhnya di udara. Prinsip cara terbang burung tersebut diterapkan pada pesawat terbang, khususnya pada pesawat terbang bersayap bentuk airfoil.

Sayap burung memiliki susunan kerangka ringan, tulang dada kuat dan otot yang kuat. Bentuk sayap airfoil membuat udara mengalir pada bagian atas sayap lebih cepat daripada bagian bawah. Dorongan ke bawah tersebut akan menghasilkan gaya yang berlawanan arah sehinggan burung akan terangkat ke atas.

Lihat gambar disamping itu adalah alat alat pernapasan burung. Pelajari lebih lanjut dibawah ini :




Lubang hidung
Lubang hidung dibagi 2 yaitu lubang hidung luar dan dalam. Lubang hidung luar terdapat di pangkal paruh sebelah atas dan berjumlah sepasang. Sedangkan lubang hidung dalam berada di langit-langit rongga mulut.

Trakea
Trakea tersusun atas tulang rawan yang berbentuk lingkaran. Trakea ini bercabang menjadi bronkus kanan dan kiri. Bronkus ini kemudian akan menghubungkan siring dan paru-paru. Siring mempunyai selaput yang akan bergetar dan menghasilkan bunyi jika ada udara yang lewat.

Paru-paru
Paru-paru berada sepasang dan menempel di dinding dada bagian dalam. Paru-paru di burung dibungkus dengan selaput paru-paru (pleura) dan berhubungan dengan kantong udara. Paru-paru burung tidak memiliki alveoli dan sebagai gantinya adalah pembuluh udara yang disebut parabronki. Saluran udara di parabronki bercabang-cabang  berupa pembuluh kapiler udara yang letaknya berdampingan dengan kapiler darah.  

Kantung udara
Pada burung terdapat kantong udara. kantong udara pada burung berjumlah 9, antara lain:
  • 1 buah kantong udara di antara tulang selangka2 buah kantong udara di leher
  • 2 buah kantong udara di leher
  • 2 buah kantong udara di perut
  • 2 buah kantong udara di dada belakang
  • 2 buah kantong udara di dada depan2 buah kantong udara di perut
Fungsi  kantong udara antara lain:
  • Untuk bernapas saat terbang
  • Membantu memperkeras suara karena dapat memperbesar ruang siring
  • Mencegah kedinginan dengan menyelubungi alat-alat dalam dengan rongga udara
  • Mengurangi panas badan agar tidak banyak yang hilang
  • Pada saat berenang, dapat memperbesar dan memperkecil berat jenis tubuhnya


VIDEO







Sumber : Wikipedia, Youtube dan ipa-gampang.blogspot.co.id

Komentar

Postingan populer dari blog ini

Praktikum Gerak Nasti

Pengaruh Rangsang Terhadap Gerak Menutup Dan Membukanya Daun Putri Malu  Pada pagi hari ini tanggal 7 Aguatus 2017 kami siswa kelas 8E melakukan observasi dilingkungan SMP N 1 Wonosari (dilapangan kesatrian) mengenai gerak nasti.Tumbuhan yang kami amati pada pagi hari ini adalah putri malu.  Hal yang kami duga sebelum melakukan praktikum bahwa a) Daun putri malu akan lebih cepat menutup jika disentuh tangan b) Daun putri malu akan lebih lambat menutup jika terkena suhu panas c) daun putri malu akan lebih cepat menutup jika suhu dingin perlakuan:disentuh pada permukaan daun waktu menutup:2,5 detik perlakuan:pada daun putri malu yang mendapat suhu panas pada permukaan bawah daun waktu:  6,5 detik perlakuan:pada daun putri malu yang mendapat suhu dingin dari es batu waktu:13 detik (belum terlihat menutupnya) Perlakuan:sentuhan pada tangkai daun putri malu waktu:1,5 detik Anggota Kelompok: Arta Sofi Afnan (02) Leni Surya Andari (12

Pemantulan Cahaya

Pengertian Pemantulan Cahaya dan Macam-Macamnya Setiap pagi sebelum berangkat sekolah pasti bercermin terlebih dahulu  kan ? Untuk melihat penampilan,  memastikan apakah seragam yang dipakai sudah rapi atau belum, atau hanya untuk memastikan rambut masih berantakan atau tidak.  Nah,   Squad   tau   tidak saat kita bercermin ternyata ada proses pemantulan cahaya   lho. Contoh pemantulan cahaya (Sumber: media.giphy.com) Lalu apa  sih  pemantulan cahaya? Pemantulan cahaya adalah proses perubahan arah rambat cahaya ke sisi ‘medium’ asalnya, setelah menumbuk antarmuka dua medium. Secara sederhana,  pemantulan cahaya  adalah  proses terpacarnya kembali cahaya dari permukaan benda yang terkena cahaya. Ditinjau dari segi arah sinar pantul atau bentuk permukaan benda  yang memantulkan cahaya, terdapat dua jenis pemantauan yaitu: 1. Pemantulan Teratur ( Specular Reflection ) Apabila benda-benda seperti cermin datar, air yang tenang disinari dengan sinar matahari maka sin

Jenis-Jenis Manometer

a. Manometer raksa terbuka Manometer raksa terbuka digunakan untuk mengukur tekanan udara di ruang tertutup yang tekanannya rendah. Besar tekanan gas dalam ruang tertutup dapat dihitung dengan rumus sebagai berikut.   P = (B + Δh) cmHg Keterangan : P = tekanan gas dalam ruang tertutup (Pa atau N/m 2 ) B = sikap barometer (cm Hg) Δh = selisih tinggi raksa dalam kedua kaki pipa U (cm) b. Manometer raksa tertutup Manometer raksa tertutup terbuat dari tabung kaca berbentuk U yang salah satu ujungnya tertutup sehingga di bagian bawah ujung yang tertutup ini terbentuk ruang hampa. Dengan menghubungkan ujung yang lain pada ruang tertutup yang berisi gas maka tekanan gas dalam ruang itu dapat diketahui. Besarnya tekanan gas yang diukur adalah   P = ((l 1 :l 2 ) x B + Δh) cmHg Keterangan : P = tekanan gas yang diukur (cmHg) l 1  = panjang udara tertutup mula-mula (cm) l 2  = panjang udara tertutup setelah pipa dihubun kan (cm) B = tekanan udara tertutup mula-mula (cmHg)